55 resultados para biological applications of polymers

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of hyperbranched polymers is a rapidly expanding field in the area of macromolecular science. This short review highlights some of the notable examples in the synthesis of hyperbranched polymers and some of the key advances that have been made in the application of these hyperbranched materials in the areas of material property modifications and in high value technologies. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ferroelectric liquid crystal spatial light modulator is used to generate up to 24 independently controllable traps in a holographic optical tweezers system using time-multiplexed Fresnel zone plates. For use in biological applications, helical zone plates are used to generate Laguerre-Gaussian laser modes. The high speed switching of the ferroelectric device together with recent advances in computer technology enable fast, smooth movement of traps that can be independently controlled in real time. This is demonstrated by the trapping and manipulation of yeast cells and fungal spores. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biocontrol agents such as Xeiwrhabduf, nemalophilci and X. nematophila ssp. bovienii and their cell-free protein toxin complexes were lethal to larvae of O. sulcatus when applied to potting compost in the absence of plants. Similarly, strawberry plants infected with 0. sulcaitfi larvae were protected from damage by applications of both cell suspensions of the bacteria and solutions of their cell-free toxic metabolites, indicating that it is the protein toxins, which are responsible for the lethal effects observed. These toxic metabolites were found more effective against 0. sulccitus larvae when treated in soil microflora. Insect mortality is increased by increasing temperature and bacterial concentration. The toxins remained pathogenic for several months when stored in potting soil either at 15 or 20°C, however, bacterial cells were not as persistent as the toxins. It is therefore suggested that these bacteria and their toxic metabolites can he applied in soil for insect pest control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopamine has previously been shown to inhibit angiogenesis in vitro and in vivo, but its clinical applications in this context are severely limited by its short half-life. Here we report the synthesis of a polyglutamic acid-dopamine conjugate and show that conjugation significantly extends (from 1 to 24 h) dopamine’s antiangiogenic activity in vitro and in vivo. These findings form the basis for the development of a new class of agents for the treatment of angiogenesis-dependent diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An individual's metabolic phenotype, and ultimately health, is significantly influenced by complex interactions between their genes and the diet. Studying these associations and their downstream biochemical consequences has proven extremely challenging using traditional hypothesis-led strategies. Metabonomics, a systems biology approach, allows the global metabolic response of biological systems to stimuli to be characterised. Through the application of this approach to nutritional-based research, nutrimetabonomics, the biochemical response to dietary inputs is being investigated at greater levels of resolution. This has allowed novel insights to be gained regarding intricate diet-gene interactions and their consequences for health and disease. In this review, we present some of the latest research exploring how nutrimetabonomics can assist in the elucidation of novel biomarkers of dietary behaviour and provide new perspectives on diet-health relationships. The use of this approach to study the metabolic interplay between the gut microbiota and the host is also explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels have become very popular due to their unique properties such as high water content, softness, flexibility and biocompatibility. Natural and synthetic hydrophilic polymers can be physically or chemically cross-linked in order to produce hydrogels. Their resemblance to living tissue opens up many opportunities for applications in biomedical areas. Currently, hydrogels are used for manufacturing contact lenses, hygiene products, tissue engineering scaffolds, drug delivery systems and wound dressings. This review provides an analysis of their main characteristics and biomedical applications. From Wichterle’s pioneering work to the most recent hydrogel-based inventions and products on the market, it provides the reader with a detailed introduction to the topic and perspective on further potential developments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Displacement studies on leaching of potassium (K+) were conducted under unsaturated steady state flow conditions in nine undisturbed soil columns (15.5 cm in diameter and 25 cm long). Pulses of K+ applied to columns of undisturbed soil were leached with distilled water or calcium chloride (CaCl2) at a rate of 18 mm h(-1). The movement of K+ in gypsum treated soil leached with distilled water was at a similar rate to that of the untreated soil leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 15 mM, the expected values for the dissolution of the gypsum. When applied K+ was displaced with the distilled water, K+ was retained in the top 10-12.5 cm depth of soil. In the undisturbed soil cores there is possibility of preferential flow and lack of K+ sorption. The application of gypsum and CaCl2 in the reclamation of sodic soils would be expected to leach K+ from soils. It can also be concluded that the use of sources of water for irrigation which have a high Ca2+ concentration can also lead to leaching of K+ from soil. Average effluent concentration of K+ during leaching period was 30.2 and 28.6 mg l(-1) for the gypsum and CaCl2 treated soils, respectively. These concentrations are greater than the recommended guideline of the World Health Organisation (12 mg K+ l(-1)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the Lambourn and Pang river-systems to integrate current process-knowledge and available-data to test two hypotheses and thereby determine the key factors and processes controlling the movement of nitrate at the catchment-scale in lowland, permeable river-systems: (i) that the in-stream nitrate concentrations were controlled by two end-members only: groundwater and soil-water, and (ii) that the groundwater was the key store of nitrate in these river-systems. Neither hypothesis was proved true or false. Due to equifinality in the model structure and parameters at least two alternative models provided viable explanations for the observed in-stream nitrate concentrations. One model demonstrated that the seasonal-pattern in the stream-water nitrate concentrations was controlled mainly by the mixing of ground- and soil-water inputs. An alternative model demonstrated that in-stream processes were important. It is hoped further measurements of nitrate concentrations made in the catchment soil- and ground-water and in-stream may constrain the model and help determine the correct structure, though other recent studies suggest that these data may serve only to highlight the heterogeneity of the system. Thus when making model-based assessments and forecasts it is recommend that all possible models are used, and the range of forecasts compared. In this study both models suggest that cereal production contributed approximately 50% the simulated in-stream nitrate toad in the two catchments, and the point-source contribution to the in-stream load was minimal. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of high-melting fibres as linear nuclei for quiescent polymeric melts is instrumental in providing the superior mechanical properties of polymeric self-composites. It also has inherent advantages in the elucidation of fundamental aspects of polymeric crystallization and self-organization, not least in allowing systematic microscopic studies of polymeric crystallization from nucleation through to the growth interface. This has demonstrated explicitly that lamellae develop in two distinct ways, for slower and faster growth, depending on whether fold packing has or has not time to order before the next molecular layer is added with only the former leading to banded growth in linear polyethylene. Other gains in understanding concern cellulation and morphological instability, internuclear interference, isothermal lamellar thickening and banded growth being a consequence of the partial relief of initial surface stress. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maize silage nutritive quality is routinely determined by near infrared reflectance spectroscopy (NIRS). However, little is known about the impact of sample preparation on the accuracy of the calibration to predict biological traits. A sample population of 48 maize silages representing a wide range of physiological maturities was used in a study to determine the impact of different sample preparation procedures (i.e., drying regimes; the presence or absence of residual moisture; the degree of particle comminution) on resultant NIR prediction statistics. All silages were scanned using a total of 12 combinations of sample pre-treatments. Each sample preparation combination was subjected to three multivariate regression techniques to give a total of 36 predictions per biological trait. Increased sample preparations procedure, relative to scanning the unprocessed whole plant (WP) material, always resulted in a numerical minimisation of model statistics. However, the ability of each of the treatments to significantly minimise the model statistics differed. Particle comminution was the most important factor, oven-drying regime was intermediate, and residual moisture presence was the least important. Models to predict various biological parameters of maize silage will be improved if material is subjected to a high degree of particle comminution (i.e., having been passed through a 1 mm screen) and developed on plant material previously dried at 60 degrees C. The extra effort in terms of time and cost required to remove sample residual moisture cannot be justified. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microbial fermentability, ruminal degradability and digestibility of 48 maize silages were determined using in vitro gas production (GP), in situ degradability and in vitro digestibility procedures. The silages were produced from forage maize harvested throughout the summer of 1998, and represent a wide range of physiological maturities. Large variations among samples were observed for all biological parameters, with the exception of in vitro digestibility and the asymptote of in vitro GP. The potential of near infrared reflectance spectroscopy (NIRS) to predict the biological parameters measured was determined by regression of the biological data against the respective spectral profile. NIRS demonstrated only a moderate ability (R-2 > 0.60-0.80) to predict in vitro digestibility, modelled kinetics of gas production (excluding the asymptote of gas production) and the modelled ruminally soluble dry matter (DM) fraction. Calibration statistics for remaining biological parameters were unacceptably poor (R-2 = 0.60). (C) 2004 Elsevier B.V. All rights reserved.